Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function.
نویسندگان
چکیده
Neural crest progenitor cells are the main contributors to craniofacial cartilage and connective tissue of the vertebrate head. These progenitor cells also give rise to the pigment, neuronal and glial cell lineages. To study the molecular basis of neural crest differentiation, we have cloned the gene disrupted in the mont blanc (mob(m610)) mutation, which affects all neural crest derivatives. Using a positional candidate cloning approach we identified an A to G transition within the 3' splice site of the sixth intron of the tfap2a gene that abolishes the last exon encoding the crucial protein dimerization and DNA-binding domains. Neural crest induction and specification are not hindered in mob(m610) mutant embryos, as revealed by normal expression of early neural crest specific genes such as snail2, foxd3 and sox10. In addition, the initial stages of cranial neural crest migration appear undisturbed, while at a later phase the craniofacial primordia in pharyngeal arches two to seven fail to express their typical set of genes (sox9a, wnt5a, dlx2, hoxa2/b2). In mob(m610) mutant embryos, the cell number of neuronal and glial derivatives of neural crest is greatly reduced, suggesting that tfap2a is required for their normal development. By tracing the fate of neural crest progenitors in live mont blanc (mob(m610)) embryos, we found that at 24 hpf neural crest cells migrate normally in the first pharyngeal arch while the preotic and postotic neural crest cells begin migration but fail to descend to the pharyngeal region of the head. TUNEL assay and Acridine Orange staining revealed that in the absence of tfap2a a subset of neural crest cells are unable to undergo terminal differentiation and die by apoptosis. Furthermore, surviving neural crest cells in tfap2a/mob(m610) mutant embryos proliferate normally and later differentiate to individual derivatives. Our results indicate that tfap2a is essential to turn on the normal developmental program in arches 2-7 and in trunk neural crest. Thus, tfap2a does not appear to be involved in early specification and cell proliferation of neural crest, but it is a key regulator of an early differentiation phase and is required for cell survival in neural crest derived cell lineages.
منابع مشابه
Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype.
Tfap2a is a transcriptional activator expressed in many different cell types, including neurons, neural crest derivatives and epidermis. We show that mutations at the zebrafish locus previously called mont blanc (mob) or lockjaw (low) encode tfap2a. The mutant phenotype reveals that tfap2a is essential for the development of hindbrain noradrenergic (NA) neurons of the locus coeruleus, medulla a...
متن کاملGenetic ablation of neural crest cell diversification.
The neural crest generates multiple cell types during embryogenesis but the mechanisms regulating neural crest cell diversification are incompletely understood. Previous studies using mutant zebrafish indicated that foxd3 and tfap2a function early and differentially in the development of neural crest sublineages. Here, we show that the simultaneous loss of foxd3 and tfap2a function in zebrafish...
متن کاملAP2-dependent signals from the ectoderm regulate craniofacial development in the zebrafish embryo.
AP2 transcription factors regulate many aspects of embryonic development. Studies of AP2a (Tfap2a) function in mice and zebrafish have demonstrated a role in patterning mesenchymal cells of neural crest origin that form the craniofacial skeleton, while the mammalian Tfap2b is required in both the facial skeleton and kidney. Here, we show essential functions for zebrafish tfap2a and tfap2b in de...
متن کاملlockjaw encodes a zebrafish tfap2a required for early neural crest development.
The neural crest is a uniquely vertebrate cell type that gives rise to much of the craniofacial skeleton, pigment cells and peripheral nervous system, yet its specification and diversification during embryogenesis are poorly understood. Zebrafish homozygous for the lockjaw (low) mutation show defects in all of these derivatives and we show that low (allelic with montblanc) encodes a zebrafish t...
متن کاملTFAP2 paralogs regulate melanocyte differentiation in parallel with MITF
Mutations in the gene encoding transcription factor TFAP2A result in pigmentation anomalies in model organisms and premature hair graying in humans. However, the pleiotropic functions of TFAP2A and its redundantly-acting paralogs have made the precise contribution of TFAP2-type activity to melanocyte differentiation unclear. Defining this contribution may help to explain why TFAP2A expression i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 131 7 شماره
صفحات -
تاریخ انتشار 2004